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Abstract 
Functional characterizations of pathways provide 

new opportunities in defining, understanding, and 
comparing existing biological pathways, and in 
helping discover new ones in different organisms. In 
this paper, we present and evaluate computational 
techniques for categorizing pathways, based upon the 
Gene Ontology (GO) annotations of enzymes within 
metabolic pathways. 

Our approach is to use the notion of functionality 
templates, GO-functional graphs of pathways. 
Pathway categorization is then achieved through 
learning models built on different characteristics of 
functionality templates. We have experimentally 
evaluated the accuracy of automated pathway 
categorization with respect to different learning 
models and their parameters. Using KEGG metabolic 
pathways, the pathway categorization tool reaches to 
90% and higher accuracy.  

1. Introduction 
Metabolic pathways are networks of biochemical 
reactions, concerned with generating energy for driving 
various cell processes, and degrading and synthesizing 
many different molecules. A metabolic pathway 
contains a set of reactions (processes), where a reaction 
is a biochemical step that (a) specifies the consumption 
of specific input (substrate) molecules and the 
production of specific output (product) molecules, (b) 
usually involves one enzyme (or a set of enzymes), a 
gene product, catalyzing the reaction, and 
combinations of molecules as cofactors, activators, 
inhibitors, and regulators. Metabolite denotes any 
molecule, except for the enzyme, in a reaction, which 
is sometimes referred as a “step”. 

Gene Ontology (GO) [7] describes the central 
attributes of genes/gene products, and contains about 
20,000 concepts organized in a hierarchical manner 
through is-a and part-of relations. GO has three 

subontologies, namely, biological process, cellular 
location, and molecular function.  

In this paper, we describe PW-ANN [23], a GO-
based pathway annotation and categorization system. 
Intuitively, pathways inherit annotations of their 
building blocks, namely, enzymes as gene products; 
and, our hypothesis is that functional (i.e., GO-based) 
annotations of pathways will provide new 
opportunities in understanding, categorizing, and 
comparing pathways, and in helping discover new 
ones.  

To perform pathway annotation analysis and 
pathway categorization, our approach is to model each 
pathway as a network of GO-based enzyme functions, 
which we call the (pathway) functionality template 
(PFT). Via the use of PFTs, we change our focus to the 
function carried out in each step of a pathway, rather 
than the performer of the step, i.e., the enzyme. In the 
rest of the paper, we use the term “functionality” to 
mean “GO-based” functionality (represented by GO 
concepts from the molecular function subontology). 

The motivation in using functionality templates 
comes from the following reasoning: (a) essential 
cellular actions in different organisms involve similar 
sequences of functional units, (b) it is known that most 
of the cellular actions are common to a large set of 
organisms regardless of their complexity [16], and (c) 
the same function in different organisms does not have 
to be carried out by the same genomic agent; it can be 
performed by a different genomic agent with similar 
functionality (i.e., functional annotation). Hence, by 
employing pathway functionality templates as opposed 
to pathways, we compensate for the variances in 
genomes of different organisms in terms of 
functionality, and yet accommodate the commonness 
in blueprints of biological processes. 

The first capability of PW-ANN is to provide 
“enrichment/deficiency-based” statistical analysis of 
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functional annotations of pathways. PW-ANN allows 
users to query for GO molecular function concepts that 
significantly “enrich” a pathway (via a statistical 
significance notion--see Section 2.2), or for those in 
which the pathway is “deficient”. The same query can 
also be posed in the opposite direction to search for 
pathways which are enriched (or deficient in) a given 
GO functionality annotation. In order to evaluate how 
significant an annotation is, we perform statistical 
analysis based on a hypergeometric distribution, as 
described in Section 2.2. 

The second capability of PW-ANN is pathway 
categorization, i.e., organizing pathways into a 
particular hierarchy. Pathway categorization helps 
researchers browse and get a better grasp of pathways 
based on their vicinities with other pathways. More 
importantly, it gives possibly different, previously 
unknown, perspectives about pathways in the same 
category in that they may perhaps have similar 
functionalities that were not known beforehand. Thus, 
there is a need for bioinformatics tools that perform 
automated pathway categorization in different ways. 
We evaluate (section 5) PW-ANN’s accuracy in 
performing pathway categorization in different 
organisms.  

PW-ANN [23] is developed as part of a long-term 
bioinformatics research project, PathCase [22], a web-
based application that provides various tools for 
storing, browsing, querying, visualizing and analyzing 
genomic pathways. PW-ANN has been fully integrated 
into PathCase, and is available on the web. 

Contributions of this paper are: 
• Statistical analysis of GO annotation significances 

within functionality templates. 
• Solving the pathway categorization problem (as an 

example functional pathway analysis problem). 
The use of Support Vector Machines (SVM) [26], 
Decision Trees [24] and Naïve Bayes 
classification [20] for automated pathway 
categorization based on functional annotations of 
pathways, namely, functionality templates.  

• Implementation and description of the pathway 
annotation and functionality visualization tool, 
PW-ANN. On the fly-creation of pathway 
functionality templates, visualization of templates 
at different levels of specificity based on the 
hierarchical organization of the GO levels. New 
querying schemes for pathways databases in terms 
of functionality associations to pathways. 

• Experimental evaluation of pathway categorization 
accuracy. Experimental results show that PW-
ANN provides an accuracy of over 90%. 

This paper considers only metabolic pathways. But, 
the methods described here can also be applied to other 
biological networks, e.g., signaling pathways.  

Section 2 describes functional annotation of 
pathways, namely, PFTs (Section 2.1) and statistical 
enrichment-deficiency analysis of functional 
annotations (Section 2.2). In section 3, we present 
automated pathway categorization based on features 
that include frequent patterns in PFTs. Section 3.1 
defines the problem of locating frequent patterns in 
PFTs. Section 4 presents an overview of the features of 
PW-ANN. Section 5 discusses an automated 
mechanism to estimate pathway categories, and 
presents its experimental evaluation. In section 6, we 
briefly discuss related work. 
2. Functional Annotation of Pathways 
2.1. Pathway Functionality Templates 
A pathway can be viewed as a graph of enzymes, 
where enzymes are nodes, and an edge between two 
enzymes indicates that the reactions catalyzed by the 
two enzymes directly share products and substrates. 
Figure 2.1 illustrates a pathway with five reactions 
where the reactions are represented by rectangles with 
the (abbreviated) name of their catalyzing enzymes 
inside rectangles, and circles labeled with the letter 
“m” represent metabolites (not explicitly named for 
simplicity) being consumed and/or produced. Figure 
2.2 depicts the enzyme graph for the same pathway 
where metabolites of Fig. 2.1 are eliminated. 

nos1

mhcA

aclA

orct2 mskm m m m

 
Figure 2.1. A sample pathway 
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orct2 msk

 
Figure 2.2. Enzyme graph for the pathway in Fig. 2.1 

Usually, each enzyme is annotated with a set of 
concepts from GO. Functionality template for a 
pathway (PFT) is constructed by replacing the 
catalyzing enzyme of each process with its annotating 
GO concept(s). Figure 2.3 shows the pathway of Fig. 
2.1 with its enzyme annotations. Note that, due to the 
hierarchical organization of GO concepts (Figure 2.5), 
annotations can be applied at different levels of 
specificity. In Figure 2.3, for instance, the last two 
steps can be considered as a single functional unit 
which is responsible for transporter activity. Therefore, 
a pathway can have multiple functionality templates 
depending on the levels of GO hierarchy from which 
the enzyme annotations are selected. Figure 2.4 depicts 
several functionality templates for the pathway of Fig. 
2.1 in decreasing order of specificity. 

In linking GO concepts with pathways, we used the 
mapping from EC (Enzyme Commission) Numbers to 
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GO concepts provided by the Gene Ontology 
Consortium [19] as well as the GenBank [4] records of 
genes that produce the enzymes in metabolic pathways. 
There are a total of 2,205 enzymes taking reaction-
catalyzing roles in KEGG pathways (i.e., our 
experimental set of pathways). 1,086 of them have 
direct annotations available in the GO database. 
Among the1,119 enzymes which have no direct GO 
annotations, 978 of them are indirectly assigned at least 
one GO annotation through the “EC-to-GO” mapping 
given at the GO Consortium's web site. Thus, at the 
present time, only 141 out of 2,205 enzymes (about 6% 
of the total number) enzymes in our experimental 
pathways data set are  not annotated (neither have 
direct annotations, nor can be indirectly annotated 
through EC-to-GO mapping). 

nos1

mhcA

aclA

orct2 msk
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Figure 2.3. Pathway with Enzyme Annotations 
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 Figure 2.4. Alternative Functionality Templates 
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Figure 2.5. Hierarchical organization of GO 

concepts  

2.2 Statistical Analysis of Annotations 
Below we provide an “importance measure” of a GO 
concept annotation within a pathway, which allows the 
user to discriminate between an annotation which is 
common (among pathways of the same organism or 

over all organisms) and one which is not.  We define 
importance by drawing an analogy from the field of 
Information Retrieval (Term Frequency – Inverse 
Document Frequency [25]), in which a word or a 
phrase (term) within a document is assigned a high 
weight (i.e., importance) if it has (i) a high frequency 
in a particular document, and (ii) a low frequency in all 
the documents in the reference set.   

Given a reference set S of pathways, we use the 
hypergeometric distribution to determine the statistical 
significance [32] of an annotation c in pathway p, p ∈ 
S, which is defined as: 
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where k(c,p) is the number of times the GO concept c 
annotates enzymes in pathway p, n(p) is the total 
number of enzymes in p, N(S) is the total number of 
enzymes in the set S of all pathways, and K(c,S) is the 
total number of times c annotates enzymes of pathways 
in S.    
Def’n. (GO Annotation Significance): Given a pathway 
set S, an annotation concept c, and a pathway p in S, c 
is significant in p if the  statistical significance of c in p 
is less than the threshold γ, namely, P(c, p,S) < γ. 

The significance threshold γ that is used by PW-
ANN is 0.01. 
Def’n. (GO Concept Enrichment/Deficiency): For a 
given GO concept c, assume K(c,S) out of N(S) 
processes in S are annotated by c. And, for a given 
pathway p with n processes, let k(c,p) be the number of 
processes annotated by c in p. We say that c enriches p 
if its annotation is significant in p, and the observed 
annotation count k(c,p) of c in p is greater than the 
expected annotation count n(p)*[K(c,S)/N(S)] of c in p, 
that is, k(c,p)>n(p)*[K(c,S)/N(S)]. Likewise, we say 
that c is deficient in p if its annotation is significant in 
p, and the observed annotation count k(c,p) of c in p is 
less than the expected annotation count 
n(p)*[K(c,S)/N(S)] of c in p, that is, k(c,p)< 
n(p)*[K(c,S)/N(S)]. Furthermore, we say that c 
annotates p with the enrichment ratio R(c,p,S)= k(c,p)/ 
[n(p)*K(c,S)/N(S)] 

The pathways included in the reference pathway set 
S directly define the semantics of enrichment. If S 
contains all known pathways, and we find that c 
enriches p, then the indication is that the annotation of 
p by c is globally important. Global Annotation 
Significance is the GO annotation significance P(c,p,S) 
of GO concept c in pathway p with respect to all 
pathways in a database.  

The reference pathway set S can also contain all 
pathways in a group, using the pathway groups defined 
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by KEGG [15]. Considering the annotations of 
pathways in the same group as a reference set gives an 
indication of how significant an annotation is within a 
group (class) of pathways. Group Annotation 
Significance is the GO annotation significance P(c,p,S) 
of GO concept c in pathway p with respect to the 
pathways in the same group with pathway p. 

In addition to displaying enrichments, PW-ANN 
discovers annotation deficiencies.  A pathway p is 
deficient in an annotation c if c is significant in p (i.e., 
P(c, p, S) < γ) and the enrichment ratio R of c is less 
than 1; this means that c significantly under-annotates 
p. The ‘missing’ annotations are also included in the 
output data, defined as follows: a GO concept c 
annotates at least one pathway within p’s pathway 
group, but does not annotate p, and the expected 
number of annotations with the concept c is at least 1. 
We only output missing annotations from a given 
pathway group because the number of concepts 
annotating all pathways is much larger than the number 
of concepts annotating pathways within a group.  

3. Pathway Categorization 
We note that, at the present time, the number of 
“known” (i.e., curated) pathways is small (in low 
thousands) since most of the known pathways are 
curated manually from the literature and/or constructed 
in a wetlab environment (and categorized manually) by 
researchers (e.g., Reactome [21], KEGG [15], and 
MetaCyc [3]). However, there are also efforts to 
develop computational tools [9, 14] that allow 
construction, or more correctly, prediction, of 
pathways automatically. Therefore, in the very near 
future, once such computational tools become 
sufficiently mature in terms of accuracy, the number of 
available pathways will become considerably large. 

In this section, we discuss alternative approaches 
for automated pathway categorization via the use of 
functionality templates. More specifically, we 
construct pathway feature vectors, containing as 
dimensions (a) information from Section 2.2 (e.g., 
existence of GO annotations in pathways, GO 
annotation counts, global annotation significances), (b) 
frequent sub-graphs (patterns) of PFTs (Section 3.1). 
Note that our pathway feature vectors have very high 
(more than 10,000) dimensions. We then apply binary 
or multi-class classifiers (section 3.3), namely, SVM 
(Support Vector Machines), Naïve Bayes classifier, 
and Decision Trees, to categorize pathways.  
3.1 Frequent PF Pattern Discovery 
GO annotation importance computation of section 2.2 
considers pathways as enzyme lists with no structure. 
As a result, different occurrences of the same GO 
annotation in a pathway all have the same annotation 
significance. This is not always desirable: sometimes, 
it is more important to locate those GO concept 

occurrences where the annotated enzyme occurs in a 
portion of the pathway that is functionally conserved 
among many organisms (i.e., a sub-graph of the 
pathway is frequent among organism-specific versions 
of the pathway), in comparison to other annotations of 
the GO concept in non-conserved portions of the same 
pathway.  Thus, discovering frequent sub-graphs of 
pathway functionality templates is an important task to 
identify and visualize functionally conserved portions 
of pathways. In this section, we formulate the frequent 
pattern location problem (from our recent work [9]), 
which is used in pathway categorization as part of the 
pathway feature vector. 

Given a pathway, by eliminating its metabolites, we 
obtain an enzyme-only pathway graph (e.g., Figure 
2.2) where a node represents a reaction in the pathway 
and is labeled with the catalyzing enzyme of the 
reaction, and an edge from enzyme e1 to enzyme e2 
represents the information that a product of the 
reaction catalyzed by e1 is a substrate to the reaction 
catalyzed by e2.  

In order to simplify the presentation, and decrease 
the level of the problem complexity, we transform all 
pathways and the GO into trees by node and edge 
replications through the following three actions (see [9] 
for details): 

(a) Given a GO concept c with multiple parents in 
GO, a copy of the subDAG rooted at c is created for 
each parent of c. After this conversion, GO becomes a 
tree. 

(b) Given an enzyme e with multiple GO 
annotations, for each distinct annotation of e, a distinct 
copy e’ of e is created. After this conversion, each 
enzyme has a single annotation.  

(c) Given a pathway P and its enzyme graph G, 
each enzyme e with multiple incoming edges is 
replicated such that each distinct copy e’ of e is 
connected to a distinct incoming edge of e. After this 
conversion, enzyme graph of each pathway becomes a 
tree or a set of trees. 

After the replication actions take place, to obtain the 
most-specific PFT of a pathway, we translate the 
enzyme-only pathway graph by replacing each enzyme 
with its GO annotation. Note that duplicate node 
occurrences of a PFT are kept separately by assigning 
each a distinct nodeid. The overall transformation 
results in the most-specific (i.e., the most-detailed in 
terms of its annotations) PFT of a pathway (e.g., 
Figure 2.4.a among the three PFTs of Figure 2.4). Each 
pathway has one most-specific PFT. However, a given 
pathway may have large numbers of PFTs due to (a) 
multiple GO annotations for an enzyme, and (b) GO 
functionality generalizations by using the true-path 
rule, as illustrated next. 
Example. Figure 2.3 depicts the enzyme graph of the 
pathway of Figure 2.1 with GO annotations of the enzymes. 
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Next, we replace each enzyme with its most-specific 
annotation to obtain the most-specific Pathway Functionality 
Template (PFT) for the pathway.   Note that, due to the true-
path rule [7] on the hierarchical organization of GO concepts 
(Figure 2.5), a given PFT can be turned into a “more general” 
PFT by replacing any annotation with any of its ancestors. In 
the original PFT of Figure 2.4.a, the branching nodes that 
follow the first node, FMN Binding, can be replaced with 
their immediate parents to obtain the PFT in Figure 2.4.b. 
Similarly, in the PFT in Figure 2.4.b, the first and the last 
steps can be replaced with their ancestors to get the PFT in 
Figure 2.4.c. Therefore, a pathway can have multiple 
functionality templates depending on the levels in the GO 
hierarchy from which the annotations are selected. Also note 
that enzymes can have multiple annotations. In such cases, the 
original enzyme node can be replicated with all of its edges 
for each distinct annotation.  

Our hypothesis is that comparisons of different 
pathways in terms of their functionalities may lead to 
new biological insights that are not possible by 
comparisons in terms of the involved enzymes.  

As stated above, by a PF pattern, we refer to a 
subgraph of a PFT. Next, given a set S of PFTs for 
organism-specific versions of a pathway PR, we 
formulate the problem of finding frequent PF patterns 
in S. First, we give some definitions. 

Def’n (Induced Pattern Set of a PF Pattern).   Given a 
PF pattern F, the induced pattern set F* of F is the set 
of all PF patterns that can be obtained by (i) replacing 
any node in F with any of its ancestors in the GO 
ontology, and/or (ii) deleting any node and its incident 
edges from F. 

Example. Given the PFT in figure 2.4.a as a PF pattern F, 
the PFTs in figures 2.4.b and 2.4.c are both in F*.  
Note that F1 = F2 iff F1* = F2*. 
Def’n. Support of the PF pattern F, denoted as 
support(F), with respect to a set S of PFTs is the ratio 
of the number of PFTs that contain F to the total 
number of PFTs in S. 
It is easy to see that, given a set S of PFTs and a PF 
pattern F, for any Fi ∈ F*, support(Fi) ≥ support(F) 
within S.  
We also require the discovered frequent pattern set to 
be minimal and complete. For a set of patterns to be 
minimal, no pattern in the set should be included in the 
induced pattern set of another pattern in the set. And, 
completeness imposes a pattern set to include all 
possible PF patterns that satisfy the specified threshold 
requirements. 
Def’n (Minimality of a PF Pattern Set): A set R of PF 
patterns is minimal if, for any pair of patterns Fi, Fj in 
R, { Fk | Fk ∈ Fj* and Fi is a subgraph of Fk }=∅. 
Example.  Consider a pattern set R that includes as patterns 
of both Fig. 2.4.a. and Fig. 2.4.b. R is not minimal as the 

induced pattern set of the pattern in fig. 2.4.a includes the 
pattern of fig. 2.4.b.  
Def’n (Completeness of a PF Pattern Set): Let S be a 
set of PFTs, and R(ε) be a set of patterns over the 
PFTs in S with support ≥ ε where ε, 0<ε ≤ 1, is the 
support threshold. Then a set of patterns R’ with 
support threshold ε  is complete with respect to S if R’ 
contains R(ε). 
Frequent PF Pattern Location (FLP) Problem: 
Given (a) a  pathway PR, (b) a set O of organisms Oi, 1 
≤ i≤ n, (c) a set S of PFTs Pi, 1 ≤ i≤ n,   where Pi is the 
most-specific functionality template for the organism-
specific version of PR  in organism Oi, (c) a threshold ε, 
0<ε ≤ 1, the frequent PF pattern location problem is to 
find the PF pattern set F(PR, O, S, ε) such that F(PR, 
O, S, ε) is minimal and complete with respect to ε . 
In [9], we defined Generalized Suffix Graphs and gave 
algorithms to solve a variant of the FLP problem. For the 
experimental results of this paper, we have implemented 
these algorithms to solve the FLP problem. 

3.2 Constructing Pathway Feature Vectors  
In our pathway categorization system, our approach 

is to create a functionality template from each 
individual organism-specific pathway, and to collect 
features from the functionality templates to form 
feature vectors representing each pathway class. We 
employ the combination of four techniques to construct 
the elements (i.e., dimensions) of pathway feature 
vectors: 

• Existence/nonexistence (E/N) of GO 
annotations (i.e., boolean values), 

• GO annotation counts, 
• Global annotation significances, and, 
• Existence/nonexistence (E/N) of frequent PF 

patterns in pathways.  
3.3 Binary and Multi-Class Classification 

Next we perform automated pathway categorization 
by employing binary or multi-class classifiers based 
on pathway features as defined by feature vectors. 
There are a number of data mining tools that one can 
use as a classifier such as Bayesian networks and 
decision trees [11]. In this paper, we employ  
• Support Vector Machines, or SVMs, a machine 

learning method commonly used to classify complex 
objects. The objective of SVM is to find a 
hyperplane which separates the negative and positive 
examples by the widest margin. A major advantage 
of using SVM is that the performance is independent 
of dimensionality [13]. Since in our case the number 
of dimensions is very large (more than 10,000), this 
is a significant advantage.  
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• Decision Trees [24], which have a higher time 
complexity than SVMs, but are simple to understand 
and interpret.  

• Naïve Bayes Classifiers [20] which have a relatively 
simpler model as compared to SVMs. 
In section 5, we compare the classification (i.e., 

pathway categorization) accuracy of SVM, Decision 
Trees, and Naïve Bayes Classifiers. 

4. PW-ANN and New Queries 
The PW-ANN system, implemented in .NET with C# 
on an MS SQLServer relational database, is accessible 
online, via PathCase [22]. In PW-ANN, users can view 
pathways annotated by a GO concept, and navigate 
from a pathway to GO concepts that annotate that 
pathway. To use PW-ANN, click to (1) Browse 
Pathways in PathCase, (2) any pathway class (e.g., 
Amino Acids and Derivatives), (3) any pathway (e.g., 
Homocysteine pathway), and (4) GO Pathway 
Annotations (PW-ANN); then you can start using PW-
ANN. For more details, please see [18]. 

PW-ANN provides new querying schemes for 
genomic pathway databases such as 
• Given a pathway P (or a pathway fragment, or a 

super-pathway), find the relative “strengths” of 
top-k GO concepts, in sorted order, with respect to 
P. That is, find the mapping from P to top-k GO 
concepts. 

• Given a GO concept G and a set of pathways, sort 
and rank the pathways with respect to their G 
“participations”. That is, find the mapping from 
GO concepts to top-k pathways.  

• Given a GO annotation g within a pathway p, find 
the statistical significance of g with respect to GO 
annotations in a reference set of pathways S. 

5. Experiments 
In this section, we present experimental evaluations to 
evaluate the accuracy of the automated pathway 
categorization tool of section 3. We discuss 
alternatives to represent pathways as multidimensional 
feature vectors and categorize the pathways using an 
unsupervised classifier model (i.e., Support Vector 
Machines (SVM) [26], Decision Trees (DT) [24] and 
Multinominal Naïve Bayes classifier (MNB) [20]).  
5.1 Experimental Settings 
In our experiments, we have categorized metabolic 
pathways from KEGG database [15] using the second-
level categories defined in [28]. For the construction of 
classifiers, we have used YALE machine learning tool 
[29] and libsvm [5]. YALE provides a very flexible 
environment where users can construct experiments by 
inter-connecting the building blocks provided in 
YALE. In our experiments, for correlated attribute 
removal (Section 5.4) and learning model comparison 

(Section 5.7), we have used the YALE software. In all 
other classification experiments (Sections 5.1-5.6), we 
have used the stand-alone libsvm tool. The 
classification of the stand-alone libsvm tool is exactly 
the same with the libsvm component of YALE. 
However, the stand-alone libsvm works much faster 
than the one in YALE.  

We have performed k-fold cross validation to 
evaluate the average classification accuracy of the 
automated pathway categorization tool.  k-fold cross 
validation consists of splitting the entire data set into k 
equally-sized parts.  Using k-1 of those parts, a learning 
model is constructed (training), then, using the 
remaining part, the model is tested. The same process is 
repeated k times, setting aside a different ‘testing’ and 
training portion of the data set each time. We used k=5 
for all of our testing, unless mentioned otherwise. 
Accuracy is computed as the ratio of the number of 
correctly classified pathways to the number of all 
pathways. 

In all experiments, we have used the default 
classification parameters of libsvm and YALE. 
5.2 Feature Vectors, GO concepts as Attributes 
In this experiment, we compare SVM classification 
performances of different feature vector types. We 
create features from metabolic pathways that are 1) GO 
Existence/Nonexistence (E/N) (Boolean) values that 
represent whether a GO annotation is found in a 
pathway or not (the GO E/N dataset), 2) GO counts 
(Integer): the number of enzymes in a pathway that are 
annotated with a GO concept (the GO count dataset), 
3) Global annotation significance values (reals) (see 
Section 2.2) of GO concepts (the GO significance 
dataset). We repeat the classification experiment with 
different GO “frequency levels” (see Figure 5.1). For 
instance, frequency level 20 shows that we only used 
GO concepts that annotate enzymes in more than 20% 
of all pathways in the database. The reason for using 
GO frequencies is to observe accuracy changes against 
different GO specificity levels. The number of 
annotation occurences of a GO concept is referred as 
the “informativeness” [30] of the GO concept.  

In our results, we obtained the best overall accuracy 
with the GO count dataset through most of the 
frequency levels. The GO E/N dataset produces 
similar, but worse results than the GO count dataset at 
frequency levels between 0 and 10. At higher 
frequency levels, the GO E/N data set provided the 
worst results, possibly because frequent, or generic, 
GO concepts are annotated to many of the pathways 
and SVM was not able to distinguish between the 
feature vectors with existence/nonexistence values at 
higher frequency levels. 

Accuracy of classification at different annotation 
frequency levels shows how the classification of a 
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partially annotated pathway may behave. For instance, 
recent work on GO-based prediction on biological 
networks [17, 31] shows that GO annotations are best 
predicted at lower GO-levels (i.e., closer to the root of 
the GO hierarchy) and the accuracy is lost at higher 
GO-levels (i.e., closer to the leaves of the GO 
hierarchy) with the most-specific GO concepts. In this 
experiment, we obtained the best accuracy with the GO 
count dataset for complete annotations (i.e., frequency 
levels between 0-10). Feature vectors with the GO 
significance dataset provide better results for GO 
concepts between the frequency levels 15 and 40. 
Finally, we obtained the best accuracy at the highest 
frequency level with the GO count dataset. 
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Figure 5.1: Comparing accuracies of SVM 

classifications on different GO-annotation based 
pathway features. 

We explain the similar, but lower, accuracy of the GO 
E/N dataset in comparison with the GO count dataset 
as follows.  GO counts provide richer information than 
existence/nonexistence values since the 
existence/nonexistence values are simply mappings of 
GO counts that are equal to or greater than 1 to the 
existence/nonexistence value true (i.e., existence), and 
mappings of GO counts equal to 0 to the 
existence/nonexistence value false (i.e., nonexistence). 
The results obtained from the GO significance dataset 
show that GO counts are not distinctive enough for GO 
annotations at intermediate levels of the GO hierarchy 
(i.e., frequency levels between 15 and 40) while the 
significance of an annotation is a better identifier of 
pathway classes. 
5.3 Feature Vectors, PF Patterns as Attributes 
In this experiment, we measure the accuracy of SVM 
classification using frequent PF patterns in metabolic 
pathways. As described in Section 3.1, we compute the 
frequent PF patterns among all pathways, and generate 
existence/nonexistence values as to whether a frequent 
PF pattern occurs in the PFT of a pathway or not (the 
PF pattern dataset). We selected 20% as our minimum 

support threshold while mining pathways for frequent 
PF patterns. In addition, we also created a third dataset 
by merging the GO count and PF pattern attributes of 
each pathway feature vector, called the GO Count + 
PF pattern dataset).  

Table 5.2: Comparing SVM classifications based on 
structural and non-structural pathway features. 

Data Set SVM Accuracy 
GO Count 87.85% 
PF pattern 91.01% 

GO Count + PF pattern 83.33% 

As shown in Table 5.2, we obtained better 
classification results with PF patterns in comparison 
with GO counts which provided the best results among 
non-structural GO-based features (i.e., the GO E/N 
data set, the GO Count data set, and the GO 
Significance data set) in Section 5.2. In addition, 
merging GO count attributes with PF pattern attributes 
reduced the overall accuracy, possibly due to creating 
noise in the training data by mixing different attribute 
types. 
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Figure 5.3: SVM classification accuracy values on 

the PF pattern dataset. 

5.4 Feature 
We repeated SVM experiments with PF patterns for 

different frequency levels. We observed that GO-based 
attributes (i.e., the GO E/N, the GO Count, and the GO 
significance data sets, as shown in Fig. 5.1) have more 
nonzero occurrences for the reference pathway set (i.e., 
KEGG pathways), in comparison with nonzero 
occurrences of PF patterns in the reference pathway 
set. Accuracy of the classification dropped to the 
minimum accuracy level (i.e., the random classification 
accuracy), 11.33%, at frequency levels greater than 20. 
This also shows that individual PF patterns are better 
indicators of pathway categories than individual GO 
annotations (i.e., lesser number of attributes, the same 
number of pathways, but better classification). 
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Selection with Attribute Correlations 
In this experiment, we filter out the correlated 

attributes [1] in the datasets, and observe changes in 
the number of attributes and the SVM classification 
accuracy with respect to the allowed correlation 
amount between attributes. Correlated attributes are 
detected by using Pearson’s correlation [1] and one of 
the correlated features is removed arbitrarily during the 
filtering process. As the correlation value, we use 
absolute values of Pearson correlation measurement 
(i.e., the correlation value is in the range [0,1]).  

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

10
0% 95

%
90

%
85

%
80

%
70

%
50

%
30

%
10

%
0.1

0%
Correlation

A
cc

ur
ac

y

0

200

400

600

800

1000

1200

1400

1600

1800

A
ttr

ib
ut

e 
C

ou
nt

Go Count - Accuracy
PF pattern Accuracy
GO Count - Attribute Count
PF pattern Attribute Count

 
Figure 5.4: SVM classification using the PF pattern 

and the GO-count datasets.  

In Figure 5.4, we compare the PF pattern and the GO 
Count datasets. X-axis shows the correlation filtering 
level, Y-axis on the left defines the accuracy values, and 
data points on solid lines plot the accuracy change w.r.t. 
the correlation filtering level. Y-axis on the right defines 
the number of attributes in datasets, and the data points 
on the dotted lines plot the change in the number of 
attributes in the datasets w.r.t. the correlation filtering 
level. The results show that the filtering of correlated 
attributes constantly reduces the accuracy in the GO 
count dataset. In comparison, from Figure 5.4, the 
accuracy of the PF pattern dataset first increases to 
92.8% from 91.01% at 95% maximum correlation 
allowance (i.e., filtering correlated attributes with 
correlation above 95%), then steadily decreases. We 
observe in this experiment that PF patterns with only 125 
attributes (at %95 max. correlation) provide better results 
(92.8%) than the GO count dataset with 1,673 attributes.   
This shows that frequent pattern information in pathways 
forms better attributes to represent and classify 
pathways. 
5.5 Effect of k in k-fold Cross Validation 
In this experiment, we changed the number of cross 
validation partitions (i.e., k) to see if the SVM learning 
model stabilizes for each k value, and how the 

accuracy changes by increasing the training set size 
while reducing the prediction set size. From Table 5.5., 
we observe little increase in the accuracy, which shows 
that the trained SVM model is precise enough even 
when half of the dataset is used as the training set, and 
the other half becomes the prediction set (i.e., k=2). 

Table 5.5: k-fold cross validation. The SVM is 
trained on the PF pattern dataset after filtering out 

attributes with correlation above %95. 
k PF Pattern dataset accuracy 

2 92.52% 
3 92.68% 
5 92.80% 
10 92.84% 
20 92.87% 
50 92.88% 

5.6 Binary Classification 
In this experiment, we created binary classifiers for 
each pathway category separately, using the GO count 
dataset. The overall accuracy of binary classification is 
much higher (97.58%) than the accuracy of multi-class 
classification (87.85%) since binary classification 
simply classifies all pathways that are not in the target 
category into the same class. As a result, binary 
classification does not reflect the accuracy of a real-
world pathway categorization task which is in fact a 
multi-class classification problem. However, as shown 
in Table 5.6, binary classification results are useful to 
observe the changes in the overall prediction accuracy 
for different pathway categories.  

Table 5.6: Binary classification with pathway 
groups 

Category Name 
Overall 

prediction 
Accuracy 

#path. #ref. #shared #enz.

Amino Acid Mtbl. 96.71% 5688 16 332 522 
Biodeg. of Xenobiotics 95.00% 2680 21 163 224 
Biosynt. of Polyketides 99.36% 921 7 23 18 
Biosynt. of Sec. Mtbl. 94.98% 2433 15 115 218 
Carbohydrate Mtbl. 96.56% 5809 17 263 585 
Energy Metabolism 98.55% 2109 6 227 254 
Glycan Biosynt& 
Mtbl. 99.03% 1073 11 38 127 

Lipid Metabolism 96.95% 2882 12 125 274 
Mtbl. of Cofactors… 98.46% 3361 11 114 248 

Mtbl of other A.A. 97.84% 2661 9 181 158 
Nucleotide Mtbl. 99.93% 732 2 93 179 

As shown in Table 5.6, to observe the relationship 
between the accuracy of predictions and pathway 
group properties such as the number of reference 
pathways (i.e., organism independent) in a group 
(#ref.), the number of all organism-specific pathways 
in a group (#path.), the number of enzymes that are 
shared with another pathway group (#shared), and the 
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total number of enzymes in a group (#enz.), we 
computed the correlation (i.e., Pearson’s correlation) 
between the binary classification accuracy and group 
properties. 

There is a direct correlation between group 
properties and the prediction accuracy. Highest 
correlation (at -87.9%) is observed between the 
accuracy and the number of reference pathways. 
Negative correlation means that the accuracy increases 
while the number of reference pathways reduces. 
Other correlation amounts with the prediction 
accuracy are -53.3% with the number of pathways, -
42.7% with the number of shared enzymes and -44.3% 
with the number of enzymes in a pathway group.  

5.7 Comparison of Learning Schemes 
In this experiment, we trained different learning 

models to evaluate the time performance of SVM. 
First, we used Multinominal Naïve Bayes (MNB) 
classification [20] to categorize metabolic pathways. 
As shown in Table 5.7, among the training models we 
applied, MNB is the fastest one requiring 49 seconds 
for training and making predictions 5 times (i.e., 5-fold 
cross-validation) on the PF patterns dataset and 60 
seconds for GO Count dataset. The accuracy of MNB 
classification is around 88% for both datasets, which is 
better than the accuracy of SVM classification in GO 
Count dataset. We explain the difference between the 
accuracies of MNB and SVM in terms of different 
utilizations of attributes in different techniques. SVM 
finds the maximum-margin hyperplane that separates 
pathway categories in the attribute space. On the other 
hand, MNB measures attribute-class relationship for 
each attribute individually. As a result, the large 
number of GO annotations which has little effect on 
determining the class of a pathway reduces the 
accuracy of SVM. PF pattern dataset is a relatively 
simple dataset, including lesser number of attributes 
with a higher chance of determining the pathway 
categories. SVM performed better than the MNB 
method in this dataset. 

The Decision Tree (DT) [24] classification 
technique produces the most accurate results with both 
datasets with the additional training time cost. DT 
model iterates several times on the training data to find 
the primary attributes to distinguish between 
categories, and makes use of the rest of the other 
secondary attributes (e.g., GO annotations which have 
little effect on determining the class of a pathway), 
only when the classification based on primary 
attributes are ambiguous. As a result, when fast 
classification is desired, SVM on PF pattern dataset are 
the best learning model choices. When the training data 
is not very large and the best accuracy is desired, the 
Decision Tree model with the GO count dataset is the 
best option. On the other hand, if the decision rules of 

the Decision Tree model are desired to be manually 
analyzed and tuned after the training phase, PF pattern 
dataset is a better choice since it promises high 
classification accuracy with a small number of 
attributes. 

Table 5.7: Comparison of different learning 
schemes 

 PF Pattern GO Count 
SVM 92.80% (1199) secs) 87.62% (1341 secs) 

Decision Trees 94.61% (3147 secs) 95.74% (17380 secs)
Naïve Bayes 88.34% (49 secs) 88.54% (60 secs) 

6. Related Work 
The Gene Ontology has a free, web-based browser 

called GenNav [8], which has basic string search 
options, and provides visualizations of trees. For 
concepts with complex relationships, performance of 
GenNav is occasionally slow, perhaps because it is 
implemented in Perl, an interpreted language. 

Fati-GO is another web-based tool [2] that analyzes 
a set of genes from a high-throughput gene expression 
data at a particular level of the GO hierarchy.  Fati-GO 
displays over- and under-represented GO concepts in 
an uploaded or typed gene set. It allows users to upload 
or type in a list of genes to analyze and select the GO 
subtree to draw annotations. After using FatiGO to 
analyze the input set of genes, the user is given a list of 
GO concepts which annotate the input genes and the 
rate of annotation of each concept.   

Onto-Express [6] is a Java-based program which 
analyzes the results of a microarray experiment.  
Normally, the results of such an experiment would be a 
long, unsorted list of genes. Onto-Express uses the GO 
hierarchy to organize those genes by the GO concept 
which annotates the genes in the list.    

Gene Ontology Tree Machine [27] is a web-based 
micro-array analysis tool, and provides statistics on 
sets of “interesting genes” within the context of the 
Gene Ontology hierarchy.  GOTM statistically 
computes a set of GO concepts that are found to be 
highly associated with the specific “interesting genes” 
as compared to the reference genes set. 

GOTM, Fati-GO, and Onto-Express extract 
information about genes related to GO concepts while 
our approach is to analyze pathways with respect to 
GO concepts and analyze GO concepts with respect to 
pathways through examining annotations of the 
enzymes within pathways.  We are not aware of any 
tools which enrich pathways with GO concepts or vice-
versa.  
8. Conclusions 

Biological pathways provide a high level overview 
of cellular mechanisms governing vital processes in 
living organisms. In this paper, we have proposed a 
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pathway functionality template model based on GO 
annotations of the enzymes involved in the pathway. 
Furthermore, we presented a statistical analysis for 
enrichment or (deficiency) of functional annotations in 
a pathway. In order to illustrate the use of pathway 
functionality templates, we built a pathway 
categorization framework using existing machine 
learning techniques. We studied categorization 
accuracy by employing different approaches for 
constructing feature vectors. Using frequent PF 
patterns as features provides significant increase in 
categorization accuracy. The results are promising to 
further pursue use of PFTs for mining biological 
pathways data.   
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